Search results

1 – 3 of 3
Article
Publication date: 5 March 2018

Zhitao Yan, Yongli Zhong, William E. Lin, Eric Savory and Yi You

This paper examines various turbulence models for numerical simulation of a steady, two-dimensional (2-D) plane wall jet without co-flow using the commercial CFD software (ANSYS…

Abstract

Purpose

This paper examines various turbulence models for numerical simulation of a steady, two-dimensional (2-D) plane wall jet without co-flow using the commercial CFD software (ANSYS FLUENT 14.5). The purpose of this paper is to decide the most suitable and most economical method for steady, 2-D plane wall jet simulation.

Design/methodology/approach

Seven Reynolds-averaged Navier–Stokes (RANS) turbulence models were evaluated with respect to typical jet scaling parameters such as the jet half-height and the decay of maximum jet velocity, as well as coefficients from the law of the wall and for skin friction. Then, a plane wall jet generating from a rectangular slot of 1:6 aspect ratio located adjacent to the wall was investigated in a three-dimensional (3-D) model using large eddy simulation (LES) and the Stress-omega Reynolds stress model (SWRSM), with the results compared to experimental measurements.

Findings

The comparisons of these simulated flow characteristics indicated that the SWRSM was the best of the seven RANS models for simulating the turbulent wall jet. When scaled with outer variables, LES and SWRSM gave generally indistinguishable mean velocity profiles. However, SWRSM performed better for near-wall mean velocity profiles when scaled with inner variables. In general, the results show that LES performed reasonably well when predicting the Reynolds stresses.

Originality/value

The main contribution of this article is in determining the capabilities of different RANS turbulence closures and LES for the prediction of the 2-D steady wall jet flow to identify the best modelling approach.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 March 2024

Min Zeng, Jianxing Xie, Zhitao Li, Qincheng Wei and Hui Yang

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter…

Abstract

Purpose

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter (EKF) to estimate the temperature of the thermocouple.

Design/methodology/approach

Temperature optimal control is combined with a closed-loop proportional integral differential (PID) control method based on an EKF. Different control methods for measuring the temperature of the thermode in terms of temperature control, error and antidisturbance are studied. A soldering process in a semi-industrial environment is performed. The proposed control method was applied to the soldering of flexible printed circuits and circuit boards. An infrared camera was used to measure the top-surface temperature.

Findings

The proposed method can not only estimate the soldering temperature but also eliminate the noise of the system. The performance of this methodology was exemplary, characterized by rapid convergence and negligible error margins. Compared with the conventional control, the temperature variability of the proposed control is significantly attenuated.

Originality/value

An EKF was designed to estimate the temperature of the thermocouple during hot-bar soldering. Using the EKF and PID controller, the nonlinear properties of the system could be effectively overcome and the effects of disturbances and system noise could be decreased. The proposed method significantly enhanced the temperature control performance of hot-bar soldering, effectively suppressing overshoot and shortening the adjustment time, thereby achieving precise temperature control of the controlled object.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 April 2024

Liang Ma, Qiang Wang, Haini Yang, Da Quan Zhang and Wei Wu

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the…

Abstract

Purpose

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the enhancement of the volatile corrosion inhibition prevention performance of amino acids.

Design/methodology/approach

The carbon dots-montmorillonite (DMT) hybrid material is prepared via hydrothermal process. The effect of the DMT-modified alanine as VCI for mild steel is investigated by volatile inhibition sieve test, volatile corrosion inhibition ability test, electrochemical measurement and surface analysis technology. It demonstrates that the DMT hybrid materials can improve the ability of alanine to protect mild steel against atmospheric corrosion effectively. The presence of carbon dots enlarges the interlamellar spacing of montmorillonite and allows better dispersion of alanine. The DMT-modified alanine has higher volatilization ability and an excellent corrosion inhibition of 85.3% for mild steel.

Findings

The DMT hybrid material provides a good template for the distribution of VCI, which can effectively improve the vapor-phase antirust property of VCI.

Research limitations/implications

The increased volatilization rate also means increased VCI consumption and higher costs.

Practical implications

Provides a new way of thinking to replace the traditional toxic and harmful VCI.

Originality/value

For the first time, amino acids are combined with nano laminar structures, which are used to solve the problem of difficult volatilization of amino acids.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 3 of 3